Reproducibility: Team up with industry

The scientific community is bustling with projects to make published results more reliable. Efforts are under way to establish checklists, to revamp training in experimental design, and even to fund disinterested scientists to replicate others' experiments. A more efficient strategy would be to rework current incentives to put less emphasis on high-impact publications, but those systems are entrenched, and public funders and universities are ill-prepared for that scale of change. To catalyse change, industry must step up to the plate. I have learned this first hand, as head of the Structural Genomics Consortium (SGC), a research charity funded by business, government and other charities. If more companies contributed funds and expertise to efforts such as ours, I believe it would create a system that rewards science that is both cutting-edge and reproducible.

Many scientific "truths" are, in fact, false

In 2005, John Ioannidis, a professor of medicine at Stanford University, published a paper, “Why most published research findings are false,” mathematically showing that a huge number of published papers must be incorrect. He also looked at a number of well-regarded medical research findings, and found that, of 34 that had been retested, 41% had been contradicted or found to be significantly exaggerated. Since then, researchers in several scientific areas have consistently struggled to reproduce major results of prominent studies. By some estimates, at least 51%—and as much as 89%—of published papers are based on studies and experiments showing results that cannot be reproduced.

The Quest for Reproducible Science: Issues in Research Transparency and Integrity

A pre-conference event of the American Library Association's annual conference: "The credibility of scientific findings is under attack. While this crisis has several causes, none is more common or correctable than the inability to replicate experimental and computational research. This preconference will feature scholars, librarians, and technologists who are attacking this problem through tools and techniques to manage data, enable research transparency, and promote reproducible science. Attendees will learn strategies for fostering and supporting transparent research practices at their institutions."

Evaluating replicability of laboratory experiments in economics

The reproducibility of scientific findings has been called into question. To contribute data about reproducibility in economics, we replicate 18 studies published in the American Economic Review and the Quarterly Journal of Economics in 2011-2014. All replications follow predefined analysis plans publicly posted prior to the replications, and have a statistical power of at least 90% to detect the original effect size at the 5% significance level. We find a significant effect in the same direction as the original study for 11 replications (61%); on average the replicated effect size is 66% of the original. The reproducibility rate varies between 67% and 78% for four additional reproducibility indicators, including a prediction market measure of peer beliefs.

Psychology’s reproducibility problem is exaggerated – say psychologists

In August 2015, a team of 270 researchers reported the largest ever single-study audit of the scientific literature. Led by Brian Nosek, executive director of the Center for Open Science in Charlottesville, Virginia, the Reproducibility Project attempted to replicate studies in 100 psychology papers. According to one of several measures of reproducibility, just 36% could be confirmed; by another statistical measure, 47% could. Not so fast, says Gilbert. Because of the way the Reproducibility Project was conducted, its results say little about the overall reliability of the psychology papers it tried to validate, he argues. "The number of studies that actually did fail to replicate is about the number you would expect to fail to replicate by chance alone — even if all the original studies had shown true effects."