Towards minimum reporting standards for life scientists

Transparency in reporting benefits scientific communication on many levels. While specific needs and expectations vary across fields, the effective use of research findings relies on the availability of core information about research materials, data, and analysis. In December 2017, a working group of journal editors and experts in reproducibility convened to create the “minimum standards” working group. This working group aims to devise a set of minimum expectations that journals could ask their authors to meet, and will draw from the collective experience of journals implementing a range of different approaches designed to enhance reporting and reproducibility (e.g. STAR Methods), existing life science checklists (e.g. the Nature Research reporting summary), and the results of recent meta-research studying the efficacy of such interventions (e.g. Macleod et al. 2017; Han et al. 2017).

An empirical assessment of transparency and reproducibility-related research practices in the social sciences (2014-2017)

Serious concerns about research quality have catalyzed a number of reform initiatives intended to improve transparency and reproducibility and thus facilitate self-correction, increase efficiency, and enhance research credibility. Meta-research has evaluated the merits of individual initiatives; however, this may not capture broader trends reflecting the cumulative contribution of these efforts. In this study, we evaluated a broad range of indicators related to transparency and reproducibility in a random sample of 198 articles published in the social sciences between 2014 and 2017. Few articles indicated availability of materials (15/96, 16% [95% confidence interval, 9% to 23%]), protocols (0/103), raw data (8/103, 8% [2% to 15%]), or analysis scripts (3/103, 3% [1% to 6%]), and no studies were pre-registered (0/103). Some articles explicitly disclosed funding sources (or lack of; 72/179, 40% [33% to 48%]) and some declared no conflicts of interest (32/179, 18% [13% to 24%]). Replication studies were rare (2/103, 2% [0% to 4%]). Few studies were included in evidence synthesis via systematic review (6/96, 6% [3% to 11%]) or meta-analysis (2/96, 2% [0% to 4%]). Slightly less than half the articles were publicly available (95/198, 48% [41% to 55%]). Minimal adoption of transparency and reproducibility-related research practices could be undermining the credibility and efficiency of social science research. The present study establishes a baseline that can be revisited in the future to assess progress.

Replication Redux: The Reproducibility Crisis and the Case of Deworming

In 2004, a landmark study showed that an inexpensive medication to treat parasitic worms could improve health and school attendance for millions of children in many developing countries. Eleven years later, a headline in the Guardian reported that this treatment, deworming, had been "debunked."The pronouncement followed an effort to replicate and re-analyze the original study, as well as an update to a systematic review of the effects of deworming. This story made waves amidst discussion of a reproducibility crisis in some of the social sciences. This paper explores what it means to"replicate"and"reanalyze"a study, both in general and in the specific case of deworming. The paper reviews the broader replication efforts in economics, then examines the key findings of the original deworming paper in light of the "replication," "reanalysis," and "systematic review."The paper also discusses the nature of the link between this single paper's findings, other papers' findings, and any policy recommendations about deworming. This example provides a perspective on the ways replication and reanalysis work, the strengths and weaknesses of systematic reviews, and whether there is, in fact, a reproducibility crisis in economics.

Helping Science Succeed: The Librarian’s Role in Addressing the Reproducibility Crisis

Headlines and scholarly publications portray a crisis in biomedical and health sciences. In this webinar, you will learn what the crisis is and the vital role of librarians in addressing it. You will see how you can directly and immediately support reproducible and rigorous research using your expertise and your library services. You will explore reproducibility guidelines and recommendations and develop an action plan for engaging researchers and stakeholders at your institution. #MLAReproducibility Learning Outcomes By the end of this webinar, participants will be able to: describe the basic history of the “reproducibility crisis” and define reproducibility and replicability explain why librarians have a key role in addressing concerns about reproducibility, specifically in terms of the packaging of science explain 3-4 areas where librarians can immediately and directly support reproducible research through existing expertise and services start developing an action plan to engage researchers and stakeholders at their institution about how they will help address research reproducibility and rigor Audience Librarians who work with researchers; librarians who teach, conduct, or assist with evidence-synthesis or critical appraisal, and managers and directors who are interested in allocating resources toward supporting research rigor. No prior knowledge or skills required. Basic knowledge of scholarly research and publishing helpful. Recording ($) is available here: www.medlib-ed.org/products/2069/helping-science-succeed-the-librarians-role-in-addressing-the-reproducibility-crisis-recording

Practical open science: tools and techniques for improving the reproducibility and transparency of your research

Science progresses through critical evaluation of underlying evidence and independent replication of results. However, most research findings are disseminated without access to supporting raw data, and findings are not routinely replicated. Furthermore, undisclosed flexibility in data analysis, such as incomplete reporting, unclear exclusion criteria, and optional stopping rules allow for presenting exploratory research findings using the tools of confirmatory hypothesis testing. These questionable research practices make results more publishable, though it comes at the expense of their credibility and future replicability. The Center for Open Science builds tools and encourages practices that incentivizes work that is not only good for the scientist, but also good for science. These include open source platforms to organize research, archive results, preregister analyses, and disseminate findings. This poster presents an overview of those practices and gives practical advice for researchers who want to increase the rigor of their practices.