The Brazilian Reproducibility Initiative

Most efforts to estimate the reproducibility of published findings have focused on specific areas of research, even though science is usually assessed and funded on a regional or national basis. Here we describe a project to assess the reproducibility of findings in biomedical science published by researchers based in Brazil. The Brazilian Reproducibility Initiative is a systematic, multi-center effort to repeatbetween 60 and 100 experiments: theproject will focus on a set of common laboratory methods, repeating each experiment in three different laboratories. The results, due in 2021, will allow us to estimate the level of reproducibility of biomedical sciencein Brazil, and to investigate what the published literature can tell us about the reproducibility ofresearch in a given area.

The reproducibility crisis in the age of digital medicine

As databases of medical information are growing, the cost of analyzing data is falling, and computer scientists, engineers, and investment are flooding into the field, digital medicine is subject to increasingly hyperbolic claims. Every week brings news of advances: superior algorithms that can predict clinical events and disease trajectory, classify images better than humans, translate clinical texts, and generate sensational discoveries around new risk factors and treatment effects. Yet the excitement about digital medicine—along with the technologies like the ones that enable a million people to watch a major event—poses risks for its robustness. How many of those new findings, in other words, are likely to be reproducible?

Is it Safe to Dockerize my Database Benchmark?

Docker seems to be an attractive solution for cloud database benchmarking as it simplifies the setup process through pre-built images that are portable and simple to maintain. However, the usage of Docker for benchmarking is only valid if there is no effect on measurement results. Existing work has so far only focused on the performance overheads that Docker directly induces for specific applications. In this paper, we have studied indirect effects of dockerization on the results of database benchmarking. Among others, our results clearly show that containerization has a measurable and non-constant influence on measurement results and should, hence, only be used after careful analysis.

The Dagstuhl Beginners Guide to Reproducibility for Experimental Networking Research

Reproducibility is one of the key characteristics of good science, but hard to achieve for experimental disciplines like Internet measurements and networked systems. This guide provides advice to researchers, particularly those new to the field, on designing experiments so that their work is more likely to be reproducible and to serve as a foundation for follow-on work by others.

The Reproducibility of Economics Research: A Case Study

Published reproductions or replications of economics research are rare. However, recent years have seen increased recognition of the important role of replication in the scientific endeavor. We describe and present the results of a large reproduction exercise in which we assess the reproducibility of research articles published in the American Economic Journal: Applied Economics over the last decade. 69 of 162 eligible replication attempts successfuly replicated the article’s analysis 42.6%. A further 68 (42%) were at least partially successful. A total of 98 out of 303 (32.3%) relied on confidential or proprietary data, and were thus not reproducible by this project. We also conduct several bibliometric analyses of reproducible vs. non-reproducible articles.