Enhancing reproducibility for computational methods

Over the past two decades, computational methods have radically changed the ability of researchers from all areas of scholarship to process and analyze data and to simulate complex systems. But with these advances come challenges that are contributing to broader concerns over irreproducibility in the scholarly literature, among them the lack of transparency in disclosure of computational methods. Current reporting methods are often uneven, incomplete, and still evolving. We present a novel set of Reproducibility Enhancement Principles (REP) targeting disclosure challenges involving computation. These recommendations, which build upon more general proposals from the Transparency and Openness Promotion (TOP) guidelines (1) and recommendations for field data (2), emerged from workshop discussions among funding agencies, publishers and journal editors, industry participants, and researchers representing a broad range of domains. Although some of these actions may be aspirational, we believe it is important to recognize and move toward ameliorating irreproducibility in computational research.

Could Critical Incident Reporting Fix Preclinical Research?

Scientists propose a modified critical incident reporting system to help combat the reproducibility crisis.When Dirnagl first considered that his lab might benefit from a formal incident reporting system, he was surprised to find that no such system existed for biomedical researchers. Other high-stakes fields, from clinical medicine to nuclear power research, have long had such systems in place, but for the preclinical space, "we had to create one, because there’s nothing like it," Dirnagl said. But once Dirnagl and colleagues introduced an anonymous, online system, people began submitting reports. At meetings, the team would discuss what had gone wrong and strategize how to fix it. After a short while, Dirnagl said, his team began voluntarily filing virtually all reports with their signatures on them.

  • news article
  • Authorization of Animal Experiments Is Based on Confidence Rather than Evidence of Scientific Rigor

    Accumulating evidence indicates high risk of bias in preclinical animal research, questioning the scientific validity and reproducibility of published research findings. Systematic reviews found low rates of reporting of measures against risks of bias in the published literature (e.g., randomization, blinding, sample size calculation) and a correlation between low reporting rates and inflated treatment effects. That most animal research undergoes peer review or ethical review would offer the possibility to detect risks of bias at an earlier stage, before the research has been conducted.

    Reproducibility Crisis Timeline: Milestones in Tackling Research Reliability

    It’s not a new story, although "the reproducibility crisis" may seem to be. For life sciences, I think it started in the late 1950s. Problems caused in clinical research burst into the open in a very public way then. But before we get to that, what is "research reproducibility"? It’s a euphemism for unreliable research or research reporting. Steve Goodman and colleagues (2016) say 3 dimensions of science that affect reliability are at play: Methods reproducibility – enough detail available to enable a study to be repeated; Results reproducibility – the findings are replicated by others; Inferential reproducibility – similar conclusions are drawn about results, which brings statistics and interpretation squarely into the mix. There is a lot of history behind each of those. Here are some of the milestones in awareness and proposed solutions that stick out for me.

  • news article
  • NIH-Wide Policy Doubles Down on Scientific Rigor and Reproducibility

    The US National Institutes of Health (NIH) is now assessing all research grant submissions based on the rigor and transparency of the proposed research plans. Previously, efforts to strengthen scientific practices had been undertaken by individual institutes, beginning in 2011 with the National Institute on Aging, which partnered with APS and the NIH Office of Behavioral and Social Science Research to begin a conversation about improving reproducibility across science. These early efforts were noted and encouraged by Congress. Now, the entire agency has committed to this important goal: NIH's 2016–2020 strategic plan announces, "NIH will take the lead in promoting new approaches toward enhancing the rigor of experimental design, analysis, and reporting."

  • news article
  • The Researchers’ View of Scientific Rigor—Survey on the Conduct and Reporting of In Vivo Research

    Reproducibility in animal research is alarmingly low, and a lack of scientific rigor has been proposed as a major cause. Systematic reviews found low reporting rates of measures against risks of bias (e.g., randomization, blinding), and a correlation between low reporting rates and overstated treatment effects. Reporting rates of measures against bias are thus used as a proxy measure for scientific rigor, and reporting guidelines (e.g., ARRIVE) have become a major weapon in the fight against risks of bias in animal research. Surprisingly, animal scientists have never been asked about their use of measures against risks of bias and how they report these in publications. Whether poor reporting reflects poor use of such measures, and whether reporting guidelines may effectively reduce risks of bias has therefore remained elusive. To address these questions, we asked in vivo researchers about their use and reporting of measures against risks of bias and examined how self-reports relate to reporting rates obtained through systematic reviews. An online survey was sent out to all registered in vivo researchers in Switzerland (N = 1891) and was complemented by personal interviews with five representative in vivo researchers to facilitate interpretation of the survey results. Return rate was 28% (N = 530), of which 302 participants (16%) returned fully completed questionnaires that were used for further analysis.

    KDD 2017 Research Papers New Reproducibility Policy

    Reproducibility: Submitted papers will be assessed based on their novelty, technical quality, potential impact, insightfulness, depth, clarity, and reproducibility. Authors are strongly encouraged to make their code and data publicly available whenever possible. Algorithms and resources used in a paper should be described as completely as possible to allow reproducibility. This includes experimental methodology, empirical evaluations, and results. The reproducibility factor will play an important role in the assessment of each submission.

    Reproducibility and Validity of a Food Frequency Questionnaire Designed to Assess Diet in Children Aged 4-5 Years

    The food frequency questionnaire (FFQ) is the most efficient and cost-effective method to investigate the relationship between usual diet and disease in epidemiologic studies. Although FFQs have been validated in many adult populations worldwide, the number of valid FFQ in preschool children is very scarce. The aim of this study was to evaluate the reproducibility and validity of a semi-quantitative FFQ designed for children aged 4 to 5 years.