BOOK LAUNCH: The Practice of Reproducible Research

This symposium will serve as the launch event for our new open, online book, titled The Practice of Reproducible Research. The book contains a collection of 31 case studies in reproducible research practices written by scientists and engineers working in the data-intensive sciences. Each case study presents the specific approach that the author used to achieve reproducibility in a real-world research project, including a discussion of the overall project workflow, major challenges, and key tools and practices used to increase the reproducibility of the research.

Cancer scientists are having trouble replicating groundbreaking research

Take the latest findings from the large-scale Reproducibility Project: Cancer Biology. Here, researchers focused on reproducing experiments from the highest-impact papers about cancer biology published from 2010 to 2012. They shared their results in five papers in the journal ELife last week — and not one of their replications definitively confirmed the original results. The findings echoed those of another landmark reproducibility project, which, like the cancer biology project, came from the Center for Open Science. This time, the researchers replicated major psychology studies — and only 36 percent of them confirmed the original conclusions.

Why Should Scientific Results Be Reproducible?

Since 2005, when Stanford University professor John Ioannidis published his paper “Why Most Published Findings Are False” in PLOS Medicine, reports have been mounting of studies that are false, misleading, and/or irreproducible. Two major pharmaceutical companies each took a sample of “landmark” cancer biology papers and only were able to validate the findings of 6% and 11%, respectively. A similar attempt to validate 70 potential drugs targets for treating amytrophic lateral sclerosis in mice came up with zero positive results. In psychology, an effort to replicate 100 peer-reviewed studies successfully reproduced the results for only 39. While most replication efforts have focused on biomedicine, health, and psychology, a recent survey of over 1,500 scientists from various fields suggests that the problem is widespread. What originally began as a rumor among scientists has become a heated debate garnering national attention. The assertion that many published scientific studies cannot be reproduced has been covered in nearly every major newspaper, featured in TED talks, and discussed on televised late night talk shows.