Scientific reproducibility is key to the advancement of science as researchers can build on sound and validated results to design new research studies. However, recent studies in biomedical research have highlighted key challenges in scientific reproducibility as more than 70% of researchers in a survey of more than 1500 participants were not able to reproduce results from other groups and 50% of researchers were not able to reproduce their own experiments. Provenance metadata is a key component of scientific reproducibility and as part of the Provenance for Clinical and Health Research (ProvCaRe) project, we have: (1) identified and modeled important provenance terms associated with a biomedical research study in the S3 model (formalized in the ProvCaRe ontology); (2) developed a new natural language processing (NLP) workflow to identify and extract provenance metadata from published articles describing biomedical research studies; and (3) developed the ProvCaRe knowledge repository to enable users to query and explore provenance of research studies using the S3 model. However, a key challenge in this project is the automated classification of provenance metadata extracted by the NLP workflow according to the S3 model and its subsequent querying in the ProvCaRe knowledge repository. In this paper, we describe the development and comparative evaluation of deep learning techniques for multi-class classification of structured provenance metadata extracted from biomedical literature using 12 different categories of provenance terms represented in the S3 model. We describe the application of the Long Term Short Memory (LSTM) network, which has the highest classification accuracy of 86% in our evaluation, to classify more than 48 million provenance triples in the ProvCaRe knowledge repository (available at: