Posts about reproducibility study (old posts, page 1)

A Framework for Improving the Quality of Research in the Biological Sciences

The American Academy of Microbiology convened a colloquium to discuss problems in the biological sciences, with emphasis on identifying mechanisms to improve the quality of research. Participants from various disciplines made six recommendations: (i) design rigorous and comprehensive evaluation criteria to recognize and reward high-quality scientific research; (ii) require universal training in good scientific practices, appropriate statistical usage, and responsible research practices for scientists at all levels, with training content regularly updated and presented by qualified scientists; (iii) establish open data at the timing of publication as the standard operating procedure throughout the scientific enterprise; (iv) encourage scientific journals to publish negative data that meet methodologic standards of quality; (v) agree upon common criteria among scientific journals for retraction of published papers, to provide consistency and transparency; and (vi) strengthen research integrity oversight and training. These recommendations constitute an actionable framework that, in combination, could improve the quality of biological research.

Reproducibility and Variation of Diffusion Measures in the Squirrel Monkey Brain, In Vivo and Ex Vivo

Animal models are needed to better understand the relationship between diffusion MRI (dMRI) and the underlying tissue microstructure. One promising model for validation studies is the common squirrel monkey, Saimiri sciureus. This study aims to determine (1) the reproducibility of in vivo diffusion measures both within and between subjects; (2) the agreement between in vivo and ex vivo data acquired from the same specimen and (3) normal diffusion values and their variation across brain regions.

Empowering Multi-Cohort Gene Expression Analysis to Increase Reproducibility

A major contributor to the scientific reproducibility crisis has been that the results from homogeneous, single-center studies do not generalize to heterogeneous, real world populations. Multi-cohort gene expression analysis has helped to increase reproducibility by aggregating data from diverse populations into a single analysis. To make the multi-cohort analysis process more feasible, we have assembled an analysis pipeline which implements rigorously studied meta-analysis best practices. We have compiled and made publicly available the results of our own multi-cohort gene expression analysis of 103 diseases, spanning 615 studies and 36,915 samples, through a novel and interactive web application. As a result, we have made both the process of and the results from multi-cohort gene expression analysis more approachable for non-technical users.

Validity and Reproducibility of a Dietary Questionnaire for Consumption Frequencies of Foods during Pregnancy in the Born in Guangzhou Cohort Study (BIGCS)

This study aimed to examine the reproducibility and validity of a new food frequency questionnaire (FFQ) used in a birth cohort study to estimate the usual consumption frequencies of foods during pregnancy. The reference measure was the average of three inconsecutive 24 h diet recalls (24 HR) administrated between two FFQs, and the reproducibility was measured by repeating the first FFQ (FFQ1) approximately eight weeks later (FFQ2).

Contextual sensitivity in scientific reproducibility

Scientific progress requires that findings can be reproduced by other scientists. However, there is widespread debate in psychology (and other fields) about how to interpret failed replications. Many have argued that contextual factors might account for several of these failed replications. We analyzed 100 replication attempts in psychology and found that the extent to which the research topic was likely to be contextually sensitive (varying in time, culture, or location) was associated with replication success. This relationship remained a significant predictor of replication success even after adjusting for characteristics of the original and replication studies that previously had been associated with replication success (e.g., effect size, statistical power). We offer recommendations for psychologists and other scientists interested in reproducibility.