Posts about reproducibility infrastructure (old posts, page 1)

DeepDIVA: A Highly-Functional Python Framework for Reproducible Experiments

We introduce DeepDIVA: an infrastructure designed to enable quick and intuitive setup of reproducible experiments with a large range of useful analysis functionality. Reproducing scientific results can be a frustrating experience, not only in document image analysis but in machine learning in general. Using DeepDIVA a researcher can either reproduce a given experiment with a very limited amount of information or share their own experiments with others. Moreover, the framework offers a large range of functions, such as boilerplate code, keeping track of experiments, hyper-parameter optimization, and visualization of data and results. To demonstrate the effectiveness of this framework, this paper presents case studies in the area of handwritten document analysis where researchers benefit from the integrated functionality. DeepDIVA is implemented in Python and uses the deep learning framework PyTorch. It is completely open source, and accessible as Web Service through DIVAServices.

Developer Interaction Traces backed by IDE Screen Recordings from Think aloud Sessions

There are two well-known difficulties to test and interpret methodologies for mining developer interaction traces: first, the lack of enough large datasets needed by mining or machine learning approaches to provide reliable results; and second, the lack of "ground truth" or empirical evidence that can be used to triangulate the results, or to verify their accuracy and correctness. Moreover, relying solely on interaction traces limits our ability to take into account contextual factors that can affect the applicability of mining techniques in other contexts, as well hinders our ability to fully understand the mechanics behind observed phenomena. The data presented in this paper attempts to alleviate these challenges by providing 600+ hours of developer interaction traces, from which 26+ hours are backed with video recordings of the IDE screen and developer’s comments. This data set is relevant to researchers interested in investigating program comprehension, and those who are developing techniques for interaction traces analysis and mining.

archivist: Boost the reproducibility of your research

The safest solution would be to store copies of every object, ever created during the data analysis. All forks, wrong paths, everything. Along with detailed information which functions with what parameters were used to generate each result. Something like the ultimate TimeMachine or GitHub for R objects. With such detailed information, every analysis would be auditable and replicable. Right now the full tracking of all created objects is not possible without deep changes in the R interpreter. The archivist is the light-weight version of such solution.

Dugong: a Docker image, based on Ubuntu Linux, focused on reproducibility and replicability for bioinformatics analyses

Summary: This manuscript introduces and describes Dugong, a Docker image based on Ubuntu 16.04, which automates installation of more than 3500 bioinformatics tools (along with their respective libraries and dependencies), in alternative computational environments. The software operates through a user-friendly XFCE4 graphic interface that allows software management and installation by users not fully familiarized with the Linux command line and provides the Jupyter Notebook to assist in the delivery and exchange of consistent and reproducible protocols and results across laboratories, assisting in the development of open science projects.

Reproducible Data Analysis in Jupyter

Jupyter notebooks provide a useful environment for interactive exploration of data. A common question I get, though, is how you can progress from this nonlinear, interactive, trial-and-error style of exploration to a more linear and reproducible analysis based on organized, packaged, and tested code. This series of videos presents a case study in how I personally approach reproducible data analysis within the Jupyter notebook.

Using the Nextflow framework for reproducible in-silico omics analyses across clusters and clouds

Reproducibility has become one of biology’s most pressing issues. This impasse has been fueled by the combined reliance on increasingly complex data analysis methods and the exponential growth of biological datasets. When considering the installation, deployment and maintenance of bioinformatic pipelines, an even more challenging picture emerges due to the lack of community standards. The effect of limited standards on reproducibility is amplified by the very diverse range of computational platforms and configurations on which these applications are expected to be applied (workstations, clusters, HPC, clouds, etc.). With no established standard at any level, diversity cannot be taken for granted.