Automatic Benchmark Profiling through Advanced Trace Analysis

Benchmarking has proven to be crucial for the investigation of the behavior and performances of a system. However, the choice of relevant benchmarks still remains a challenge. To help the process of comparing and choosing among benchmarks, we propose a solution for automatic benchmark profiling. It computes unified benchmark profiles reflecting benchmarks’ duration, function repartition, stability, CPU efficiency, parallelization and memory usage. It identifies the needed system information for profile computation, collects it from execution traces and produces profiles through efficient and reproducible trace analysis treatments. The paper presents the design, implementation and the evaluation of the approach. The analysis of the kernel trace follows a workflow implemented using the VisTrails tool.

SIGMOD Repeatability Effort

As part of this project, in collaboration with Philippe Bonnet, we are using (and extending) our infrastructure to support the SIGMOD Repeatability effort. Below are some case studies that illustrate how authors can create provenance-rich and reproducible papers, and how reviewers can both reproduce the experiments and perform workability tests: packaging an experiment on a distributed database system (link in title).